Journal of Intelligent Manufacturing
https://doi.org/10.1007/s10845-023-02182-5

®

Check for
updates

Swarm intelligence-based framework for accelerated and optimized
assembly line design in the automotive industry

Anass El Houd'2® - Benoit Piranda' - Raphael De Matos? - Julien Bourgeois’

Received: 30 March 2023 / Accepted: 7 July 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract

This study proposes a dynamic simulation-based framework that utilizes swarm intelligence algorithms to optimize the design
of hybrid assembly lines in the automotive industry. Two recent discrete versions of Whale Optimization Algorithm (named
VNS-DWOA) and Gorilla Troops Optimizer (named DGTO) were developed to solve the assembly line balancing problem.
The effectiveness of these algorithms was compared to six conventional meta-heuristics as well as the solution proposed
by process design experts. The experimental results show that our methods outperform the conventional meta-heuristics
and achieve comparable or better results than the experts’ solution. Particulary, VNS-DWOA, being the top performer, has
consistently provided averagely remarkable enhancements of cycle time, ranging from 7% when compared to the process
expert’s solution to 20% maximum improvement compared to all other methods. The findings of this study highlight the
effectiveness of utilizing swarm intelligence algorithms and dynamic simulation-based frameworks as well as the potential
benefits of implementing these digital methods in industrial settings, as they can significantly accelerate and enhance the
optimization of assembly line design particularly and reduce time to market generally.

Keywords Industry 4.0 - Assembly line balancing - Swarm intelligence - Discrete metaheuristics - Combinatorial
optimization - Distributed algorithms

Introduction

The design of an assembly line is a complex process that
consists in finding an optimal solution among almost infinite
combinations of scenarios. This procedure carries consider-
able weight, as it directly affects both manufacturing costs
and the quality of the end product. In essence, Assembly
Line Design comprises three key components: the Manu-
facturing Bill Of Material (MBOM), which is the product’s

B Anass El Houd
anass.elhoud @forvia.com

Benoit Piranda
benoit.piranda@univ-fcomte.fr

Raphael De Matos
raphael.dematos @forvia.com

Julien Bourgeois
julien.bourgeois @univ-fcomte.fr

I FEMTO-ST Institute, CNRS, University of Franche-Comte,
25200 Montbeliard, France

2 R&D Center, Forvia Clean Mobility, 25250 Bavans, France

Published online: 25 July 2023

recipe specifying the list of components, assembly tasks
and precedence graph; the layout, which encompasses the
physical manufacturing environment such as workstations,
storages, and operators; and the assembly scenario, which
depicts the sequence of assembly tasks and their allocation
to specific workstations and workers. Until now, the tradi-
tional manual way of designing an assembly line involves
gathering a team of experts from various departments, such
as production, manufacturing, engineering and logistics, to
brainstorm and design the optimal layout of the assembly
line. The team members typically rely on their expertise and
experience to propose potential solutions and debate the pros
and cons of each alternative. The team may iterate over mul-
tiple designs until reaching a consensus on the final assembly
line solution. While this approach can leverage the collective
expertise of the team members and allow for valuable insights
and recommendations, it may also suffer from subjectivity,
bias, and limited scope due to the team members’ experi-
ence and background. Moreover, the manual process can be
time-consuming, labor-intensive and prone to errors, espe-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-023-02182-5&domain=pdf
http://orcid.org/0000-0002-1570-1278

Journal of Intelligent Manufacturing

cially when dealing with complex assembly line balancing
problems in large-scale production environments.

This problem is known as the general formulation of the
Assembly Line Balancing Problem (ALBP), a term regularly
employed to refer to the decision-making process that aims to
optimally partition and balance the assembly tasks among the
workstations and workers in relation with some objectives in
a continuous production system. ALBP handles the distribu-
tion of tasks among workstations and workers ensuring that a
minimum number of resources have approximately the same
amount of work to do. This strategy improves different key
performance indicators (KPI) such as the cycle time, the over-
all equipment effectiveness, and production costs (Adnan
et al., 2016; Kumar & Mabhto, 2013). The configuration of
an assembly line is a multiplex process considered NP-hard
(Hosseini & Al Khaled, 2014). The optimization of this sys-
tem is an important part of many commercial manufacturing
models and has gained attention from both industrial and
research partners.

The ALBP has three main classes: ALBP-1 minimizes
resources for a given cycle time, ALBP-2 finds a balanced
assignment solution with minimum cycle time for a fixed
number of resources, and ALBP-E maximizes total line effi-
ciency through task and workstation combinations. ALBP-1
is less significant in current industrial contexts since resource
numbers are predetermined based on machine time and have
minimal variation. ALBP-3 is more complex as it aims
to simultaneously minimize cycle time and resource num-
bers. We chose ALBP-2 for our study due to its variability
and optimization potential. Optimizing resource allocation
using ALBP-2 allows us to balance complexity and practical
applicability. Industrial gains focus on optimizing allocation
scenarios rather than layout changes due to existing machine
investments.

To summarize, given a set of tasks, the objective is to
minimize the cycle time, or equivalently, to maximize the
production rate by finding the best feasible scenario assigning
the tasks to the workstations and workers while managing
other constraints. Different types of assignment restrictions
or constraints are considered:

e Precedence constraints: the tasks are partially ordered
by anteriority relations defining a precedence graph that
should be respected.

e Incompatibility restrictions: some assembly tasks can-
not be carried out on the same workstation to prevent
distortion of parts or robot’s incompatible trajectories.
Assignments not allowed for these reasons are commonly
referred to as forbidden assignments.

e Manufacturing rules: they include all the company stan-
dard process rules to be respected such as Hoshin rules
(Giordani da Silveira et al., 2017) and one piece flow
concept.

@ Springer

This work aims to perform a comprehensive experimental
study of enhanced state-of-the-art swarm intelligence-based
meta-heuristics to solve the constrained ALBP-2 for prede-
fined layouts in the automotive industry.

Our research actively supports the digital transformation
of the industry by developing an intelligence-based tool
specifically designed for manufacturing line design work-
shops and digital twin tools (Stan et al., 2023; Prashar, 2023;
Tliba et al., 2022). This tool enables faster and more effi-
cient creation of assembly lines, ultimately reducing the time
it takes to bring new products to market. Additionally, our
research provides valuable insights and recommendations
for optimizing existing assembly lines, leading to increased
productivity and efficiency. On the academic side, our work
significantly contributes to the evaluation and application of
swarm intelligence-based methods in a real industrial setting.
We focus on a specific use case and thoroughly investigate
the effectiveness of these methods, particularly their impact
on search efficiency. Furthermore, we explore various tech-
niques such as discretization, utilization of different transfer
functions, and hybridization with other heuristics to enhance
the performance and effectiveness of swarm intelligence-
based methods in solving complex optimization problems.

Background

The development of search and optimization algorithms has
been a significant area of computer science, artificial intel-
ligence and operations research over the past few decades.
In particular, exact optimization algorithms are methods that
guarantee to find the optimal solution to a given problem
within a finite number of steps. These algorithms rely on
mathematical programming and linear algebra techniques to
explore the search space and systematically identify the best
possible solution. On the other hand, meta-heuristic algo-
rithms are general-purpose search algorithms that can be
applied to a wide range of optimization problems. They are
designed to find high-quality solutions in a shorter amount of
time, even when dealing with very large search spaces (Salhi
& Thompson, 2022).

Swarm intelligence, which has inspired the development
of several meta-heuristic algorithms, is based on the study
of collective behavior in decentralized, self-organized sys-
tems, called search agents, such as groups of animals or
social insects. Particle Swarm Optimizer (PSO) (Katoch et
al., 2021) is recognized as one of the earliest swarm-based
algorithms. It involves a group of particles that moves around
in a search space and communicates with each other to find
the optimal solution to a given problem. Another example
is Ant Colony Optimization (ACO) (Dorigo & Di Caro,
1999), a family of algorithms that are inspired by the forag-
ing behavior of ants. Grey Wolf Optimizer (GWO) (Mirjalili

Journal of Intelligent Manufacturing

et al., 2014) is inspired by the social hierarchy and hunt-
ing behavior of grey wolves, while the Whale Optimization
Algorithm (WOA) (Mirjalili & Lewis, 2016) is inspired by
the hunting behavior of humpback whales. These different
algorithms have been used to solve a variety of optimization
problems, including the traveling salesman problem, routing
and scheduling problems (Alorf, 2023).

The No-Free-Lunch theorem (Wolpert & Macready,
1997) asserts that even though there are various meta-
heuristic algorithms, the demand for additional ones exists.
This is because a meta-heuristic algorithm that performs
the most on a particular type of problem may not achieve
the same level of performance when applied to a different
type of problem. Therefore, it is essential to create more
problem-oriented meta-heuristics that are customized to each
problem’s specific features. Thus, a meticulous examination
and comprehension of the problem’s structure is a mandatory
prerequisite, along with the invention of innovative search
techniques.

Recently, Swarm intelligence-based algorithms have shown
remarkable progress in solving global optimization prob-
lems, with Gorilla Troops Optimizer (GTO) (Abdollahzadeh
et al., 2021), Sheep Flock Optimization Algorithm (SFOA)
(Kivi & Majidnezhad, 2022), Tuna Swarm Optimization
(TSO) (Xie et al., 2021), Gannet Optimization Algorithm
(GOA) (Pan et al., 2022) and Honey Badger Algorithm
(HBA) (Hashim et al., 2022) being examples of such very
recent algorithms. These algorithms have outperformed tra-
ditional and advanced optimization methods on various
benchmark functions in terms of efficiency and outcomes.

Apart from designing new algorithms, researchers have
also explored the hybridization of meta-heuristics with other
techniques like local search, machine learning, or other
meta-heuristics to enhance their effectiveness. These hybrid
algorithms can be created by combining operators, param-
eters, or components of the parent algorithms in different
ways. Several articles show that the resulting hybrid algo-
rithm can be more robust, efficient and effective than the
parent algorithms. Rajpurohit et al. (Rajpurohit & Sharma,
2022) have proposed a hybrid algorithm that combines the
features of Jellyfish search optimizer (JSO) and Sine—cosine
algorithm to create a new algorithm that outperforms both
individual algorithms. Al-Betar et al. (2022) have combined
adaptive B-hill climbing as a local search algorithm with six
swarm-based meta-heuristics to boost the training process
of neural networks. Another recent method for predicting a
back break in open-pit blasting with high accuracy has been
introduced by Dai et al. (2022). This approach combines the
strengths of random forest (RF) and particle swarm optimiza-
tion (PSO) to create a new hybrid intelligence approach.

We opted to further develop the Whale Optimization
Algorithm (WOA) due to its consistent performance and reli-
ability when discretized using heuristics or transfer functions.

Moreover, WOA demonstrated impressive outcomes across
a diverse set of combinatorial problems, as supported by the
studies conducted by Becerra-Rozas et al. (2022), Wang et al.
(2023), and Yu et al. (2022). On the other hand, our empha-
sis on the Gorilla Troops Optimizer (GTO) stemmed from its
novelty and the potential it carries in addressing the limita-
tions of conventional optimization methods. As a relatively
recent approach, GTO introduces enhanced search operators,
introducing fresh perspectives and innovative techniques.
By leveraging the cooperative behavior observed in gorilla
troops, GTO presents a compelling solution for overcoming
the inherent challenges within our specific problem domain.

Related works

Most research on the Assembly Line Balancing Problem
(ALBP) has mainly concentrated on a static assessment of the
assembly line, assuming that the cycle time of each resource
is simply the sum of the individual tasks duration of the tasks
performed by that resource without considering the dynamic
interactions between workers, workstations and all equip-
ment along the line. While this static approach is quite fast,
it only provides a basic approximation of the real cycle time
of the assembly line. As a result, this approximation may
not accurately capture the true cycle time, potentially lead-
ing to inaccuracies in the optimization process. This, in turn,
could impact the effectiveness of the search and exploration
process of the optimization method used.

Initially, there were numerous efforts to address ALBP
through the use of exact methods, especially integer and
linear programming and dynamic constrained programming
(Bukchin & Raviv, 2018; Walter et al., 2021; Mehmet et
al., 2020). Recently, Yadav and Agrawal (2022) proposed a
mathematical model of the robotic assembly line problem
to find an exact solution approach to this constrained prob-
lem. However, these methods always fail in solving complex
combinatorial optimizations, their run-time experiences a
significant surge and has no practical relevance when consid-
ering real-world problems (Mirjalili, 2020). Consequently,
several researchers shifted their attention towards recent
meta-heuristic methods due to their ability to provide near-to-
optimum solutions in a reasonable time (Mutingi et al., 2017,
Suwannarongsri & Puangdownreong, 2009; Rodriguez et
al., 2018). Chen et al. (2023) have implemented a bi-level
multi-objective genetic algorithm to optimize the number of
stations and their workload smoothness. Tang et al. (2022)
have proposed an improved multi-objective multifactorial
evolutionary algorithm to optimize assembly production and
equipment maintenance by treating it as a multi-task opti-
mization problem.

Using swarm intelligence algorithms to solve the ALBP
represents a significant challenge due to their primary focus

@ Springer

Journal of Intelligent Manufacturing

Table 1 Most Known
Meta-heuristics & Recent

Swarm-based Algorithms
Summary (D: Discrete, C:
Continuous)

Optimizer Year Citations Type Behavior

SA (Cerny 1985) 1983 51,107 D Physics-based
GA (Katoch et al., 2021) 1992 26,434 D Evolution-based
PSO (Katoch et al., 2021) 1995 67,564 C Swarm-based
ACO (Dorigo & Di Caro, 1999) 2006 13876 D Swarm-based
GWO (Mirjalili et al., 2014) 2014 6165 C Swarm-based
WOA (Mirjalili & Lewis, 2016) 2016 3731 C Swarm-based
GTO (Abdollahzadeh et al., 2021) 2021 402 C Swarm-based
TSO (Xie et al., 2021) 2021 66 C Swarm-based
SFOA (Kivi & Majidnezhad, 2022) 2022 24 C Swarm-based

on continuous optimization problems, making them less
effective in solving discrete problems. To address this lim-
itation, discretization strategies can be employed to modify
these algorithms. A potential solution to this issue is pre-
sented by Pornsing et al. (2022), who introduced a new
approach for discretizing a variant of Particle Swarm Opti-
mization (PSO), resulting in improved efficiency and per-
formance when tackling discrete problems. Similarly, a new
hybrid binary whale-hawks representation was presented by
Alwajih et al. (2022) using a transfer function to convert the
continuous attributes in binary to solve the features selec-
tion problem. The reverse problem, called the disassembly
line balancing problem (DLBP), was also tackled by Yao et
al. (xxxx), as they have focused on the implementation of
a novel metaheuristic algorithm called cat swarm optimiza-
tion (CSO) and have demonstrated its effectiveness in solving
type-1 DLBP.

Owing to the mixed-integer, nonlinear and dynamic
behavior of our problem, previous adaptations are no longer
useful. Proper changes and problem-oriented modifications
should be included to address our real-world discrete prob-
lem (Mirjalili, 2020).

To summarize, we are encountering three main issues in
directly applying state-of-the-art meta-heuristics:

e They are generally problem-independent methods, with
no prior knowledge about the real problem as a guide.

e They are generally continuous and cannot be directly
applied to discrete problems.

e Search space knowledge is not fairly propagated through
the search agents of the methods.

For that, we propose enhanced, discrete and problem-
oriented versions of swarm intelligence-based optimizers
based on Whale Optimizer Algorithm and Gorilla Troops
Optimizer and compare them with six conventional bench-
mark algorithms.

@ Springer

Mathematical model formulation

Given a list of tasks T = {t1, 12, ..., t,}, a list of identical
parallel workstations S = {s1, s2, ..., s, } and a list of work-
ers W = {W;, Wa, ..., W,}. We note P the set of pairs of
tasks (i,k) such as i precedes k, and F is the set of pairs of tasks
(i,k) such as i and k cannot be assigned to the same work-
station. An assembly scenario is mathematically modeled by
the (n x m) assignment matrix Aj:

ar,l a2

Ay = ey

Aam,1 Am,n

where a; ; = 1 if the task #; is assigned to workstation s; and
0 otherwise.

n: total number of tasks.

m: total number of workstations.

p: total number of manual workers.
i: the index of tasks, i=1,...,n

j: the index of workstations, j=1,...,m
P: the set of precedence pairs.

F: the set of restricted pairs.

CT: the overall cycle time of the assembly line.
MT: the machine time (automatic).
WC: the work content (manual).

TT: the technical time (additional).

Each task #; is composed of three time components:
machine time (MT), technical time (TT), and work content
(WC). MT is the time required for machines or robots to
perform the task, while TT includes technical actions like
launching the operation or opening the workstation door. WC
pertains to human actions, such as handling and transferring
parts between workstations.

The optimization problem is expressed by Equation (2a):

Journal of Intelligent Manufacturing

Optimizer

Encoder

" New Task/Resource

Allocation Matrix

w o
- </>)
Enconding)
Layout XML
Constraints Checking . .
v 3 Candidate Scenario
w
- |
MBOM
Swarm-Intelligence Operators]
Simulator
Cost Function Evaluation <L KPIs Analysis
XML

KPIs Feedback

Fig.1 Our proposed simulation-based optimization framework

min CT (A, W) (2a)

(ai,)
m

s.t. Zal,j=1, i=1,2...,n, (2b)

=1
m m
Yojra; <Y jran; Vi keP (20
=1 =1
aij #ar; Vi,k)€F (2d)
aij €{0,1} Vie{l,2,...,n) (2e)

Constraint 2b expresses that every task is assigned to a unique
workstation, Eq. 2c refers to the precedence constraint. Con-
straint 2d, also known as the incompatibility constraint,
ensures that incompatible tasks are not assigned to the same
workstation. The goal of the optimization problem stated in
equation 2a is to minimize the global cycle time of the assem-
bly line, which refers to the time taken to finish a single unit of
the product. This cycle time is influenced by both the assign-
ment of tasks to workstations and the assignment of workers
to workstations, as each task consists of three components:
MT, TT, and WC. To simplify the problem, each operator is
assigned to a fixed set of workstations.

n
Zai,j (MT; + TT; j + WG)

i=1

CT(A;, W) = .nllax
j=1,..,

m

3

The machine time (M T;) is deterministic and exclusively
determined by the task #;, while the technical time (T'7; ;) and
work content (W C; ;) are subject to fluctuations throughout
the assembly cycle due to their dependence on both the task

and the workstation, making the problem more complicated.
Our objective is to assign tasks to workstations in a way that
minimizes the total time needed to perform all three types of
actions (MT, TT, WC). Prior research in this area has gener-
ally employed objective functions that consider only machine
times of the tasks, and such functions have demonstrated effi-
cacy in estimating cycle time for static assembly lines that
involve only one type of assembly action. Nevertheless, in our
specific use case, which encompasses three different types
of actions per task, computing the global cycle time is more
complex. To address this challenge, we have created and inte-
grated a sophisticated manufacturing process simulator into
our framework.

End-to-end framework

Our proposed global framework, named Automatic Manu-
facturing Design Optimizer (AMDO), consists of three pri-
mary blocks as demonstrated in Fig. 1. Firstly, the optimizer
generates improved solutions and explores new assembly
scenarii. Then, the decoder converts the mathematical rep-
resentation of the solution proposed by the optimizer (Ay)
into an XML file format, which is transmitted to the simula-
tor. Solution evaluation is conducted using a discrete event
simulator, specifically customized for industrial use, called
ManufactSim (Piranda et al., 2022) and showcased in Fig. 2.
The simulator estimates the assembly line’s cycle time by
dynamically simulating the assembly process, including the
machine time of each workstation, the working time of the
operators per workstation and all related technical inter-
actions. The results are then returned to the optimizer to
enhance the previously proposed candidates.

@ Springer

Journal of Intelligent Manufacturing

Fig.2 Graphical interface of ManufactSim (Manufacturing Line Sim-
ulator)

As previously stated, determining the assembly cycle time
can be difficult using traditional analytical methods due
to the complexity and flexibility of hybrid assembly lines.
These methods often simplify the process and do not account
for dynamic interactions and fluctuations. However, using a
simulator can provide an advantage as it allows for the consid-
eration of these factors. Simulators are designed to capture
the behavior of complex systems over time, including the
dynamic interactions and fluctuations that occur within the
system. They provide a more accurate representation of the
system by incorporating a greater level of detail and com-
plexity. Our internal studies have shown that it is typically
necessary to produce at least 30 parts on average to achieve
a stable cycle time of the assembly line. Our simulator offers
a low-cost, secure and efficient way to estimate KPIs of a
given assembly scenario. It takes 2s on average to simulate
the assembly of 30 products. The development of a fast sim-
ulator was the main inspiration behind the creation of this
entire framework.

VNS-discrete whale optimizer
Original WOA

The Whale Optimizer Algorithm (WOA) (Mirjalili & Lewis,
2016) is inspired by the hunting behavior of humpback
whales. Humpback whales adopt an attacking method called
the bubble-net attacking method which includes three steps:
encircling prey, spiraling update position, and searching for
the prey. The whale’s population size is set at the beginning
of the optimization.

Encircling prey

In this process, the location of the so-far best solution (the
prey) is identified and surrounded. The whales move closer
and progressively to the location of the prey to encircle it
starting from an initial position that can be given or selected
randomly. This behavior is expressed in Equation (4).

@ Springer

Xt+1D)=X*t)—A-D

D=|C-X"(t)— X() | 4)
A=2-a-rp—a
C=2nr 5)

where X and X* denote respectively the position of a whale
and the so-far best solution, A and C coefficient vectors,
r1, rp uniform random numbers between O and 1, and a =
2 . (1 _ iter)

itermax

Spiral update behavior

During the hunting phase, each humpback whale updates its
position following a spiral path using the mathematical model
in Equation (6):

X(t+1) =D e cosrl) + X*(1) ©
D' =| X*(1) — X(1) |

where X is the position vector of a whale, X* is the so-far

best solution (or the prey), / is a uniform random number

between [-1, 1].

Searching for prey

To avoid getting stuck in local optima, the random search
approach is proposed as an imitation of the mechanism of
searching for the prey using the following equations:

D =|C - Xyana(t) — X(2) |

)
X+ 1) = Xrana(t) —A-D
Xana 1s a random whale from the population at the current
iteration.

Our proposed VNS-DWOA

The original WOA was designed for continuous optimiza-
tion problems and is not suitable for addressing our problem
directly. We present a new discrete WOA by modifying its
operators and adding VNS as a local heuristic search. This
approach combines the global search of WOA with VNS’s
local search capability, providing a powerful and effective
hybrid optimizer to our problem.

Discrete prey encirclement

As mentioned above, Whale Optimizer Algorithm adopts
shrinking encirclement to update the positions of the whales.
For our case, we mimic this behavior by following the so far
best solution to help the whales approach the global optimal
solution from their original position.

Journal of Intelligent Manufacturing

This continuous operation is replaced by a new discrete
exploitation operator, modeled by the following equation:

i iy (T + 1) < @i ()

@
ai’jmctx (t + 1) <~ aivjmin ([)
where
jmin = arg min(CTl (t)s i, CTm(l)) (9)
Jmax = argmax(CTy(t),---, CTy (1))

We denote that i is the index of a randomly selected task
from the list of tasks done in the workstation with the highest
workload in the previous iteration t (a; j(t) = 1).

The whales adjust their positions using Equation (9),
which incorporate information about the workload of each
workstation from the previous scenario. The aim is to re-
balance and re-distribute tasks efficiently. If the workload
variance is high, the algorithm selects a couple of tasks at
random from the bottleneck workstation (i.e., the one with
the highest workload) and reassigns them to the workstation
with the lowest workload. This strategy mimics the encircling
of prey by humpback whales, who use their prior knowledge
to explore promising sub-optimal regions that may contain
good solutions (preys).

Discrete spiral update

Discretizing the spiral behavior of the original WOA is not
straightforward. To preserve the effectiveness of this oper-
ator, we propose an initial step of encoding the assignment
vector Ay as a continuous matrix B on which will be applied
the spiral update. This relationship between the discrete
matrix Ay and the continuous position matrix B is given
by Equation (10)

¢(b1,1) ¢(b12)

Ay = O(Bs) = : (10)
(p(bm,l) ¢(bm,n)
where
1, Ifrand > +([)
ai.j=¢(bi ;) = Ire 0/ (11
0, else

The original spiral update is applied on the continuous values
of the position matrix By as written in Equation (12)

By(t +1) = D' - e - cos(2ml) + BX (1)

12
D' =| Bi(t) — B; (1) | 1

The continuous position matrix B; is therefore squashed
and converted back to the corresponding discrete assignment

vector A using the transfer function ®. The discrete spiral
operator is encapsulated in Equation (13)

Ag(t+1) = &(D' - - cos@2nl) + BX (1))
D' =| B} (1) — Bs(1) | (13)
Bs(t) = 7' (A, (1))

Using this approach, we are able to apply the original spi-
ral update on our discrete solution matrix A through the
intermediary of the position matrix Bs.

Seaching for the prey with VNS

Searching for the prey is done randomly in the original ver-
sion. To further improve the computational performance,
we replace the random search with Variable Neighborhood
Search (VNS) developed by Mladenovi¢ and Hansen (1997).
This mechanism is based on systematic changes of neighbor-
hoods to escape from local minimum (Hansen et al., 2017).
Three neighborhood search operators are used:

e Swapping: randomly select two elements corresponding
to different tasks and exchange their positions.

e Insertion: randomly select two elements corresponding to
different tasks and then insert one to the front of another.

e Randomizing: select randomly a possible task to be
assigned to a randomly selected workstation.

The pseudo-code of VNS-DWOA is given as follows (Algo-
rithm 1)

Algorithm 1 VNS-DWOA

Input: N, MaxlIter
Output: Best Solution
procedure VNS- DWOA
Generate random population of N, whale
while i < MaxIter do
for each whale Ay in populationdo
Calculate the objective function of the whale
end for
A* is the so far best solution
for each whale Ay in populationdo
Update a, A and C using Equation (5)
if rand(0, 1) > 0.5 then
if | A |< I then
Update the whale position using Eq. (9)
else
Update the whale using VNS Operators
end if
else
Update the whale by discrete spiral by Eq. (13)
end if
end for
end while
return A* Best Solution
end procedure

@ Springer

Journal of Intelligent Manufacturing

Discrete Gorilla troops optimizer (DGTO)
Original GTO

Artificial Gorilla Troops Optimizer (GTO) is a recent meta-
heuristic developed by Abdollahzadeh et al. (2021) and
inspired by the social behavior of the gorilla troops in which
five strategies are imitated, including moving to an unknown
area, migrating to other gorillas, moving to known places,
following the silver-back, and competing for adult females.
These different strategies illustrate the process of exploration
and exploitation in the gorilla kingdom.

Exploration phase

During the exploration phase, three mechanisms are employed.
The first mechanism of moving to unknown places is selected
when rand < p. If rand > 0.5, the mechanism of movement
towards other gorillas is chosen. Otherwise, the mechanism

the process. If C > W, the strategy of following the silver-
back is selected. This behavior is mathematically expressed

GX([+ 1) =L-M- (X(t) - Xsilver—back) + X(t) (18)
1 N 8 é

M = NZ;GX,U) (19)

g =2t (20)

X () represents the position vector of the gorilla, Xsijyerback
is the position vector of the silver-back gorilla. GX (¢ 4 1) is
the position vector of the candidate gorilla. L can be calcu-
lated using Equation (16). If C < W, the strategy of competing
for adult females is used. This mechanism imitates the com-
petition of adult gorillas with other males for mature females
and is coded as follows

GX(’ + 1) = Xiilver-back — (Xsilver-back * Q - X(t) : Q) <A

of migration to a known location is to be selected. This explo- 0=2-r5—1 2))
ration phase is modeled in Equation (14)
(UB—-LB)-r+ LB, rand < p
GX(t+1)=1m—-C)-X,(t) +L-H, rand > 0.5 (14)
X(@)—L-(L-(X(1t)—GX, () +r3-(X(#)—GX,()), rand <0.5
where GX(t + 1) shows the candidate gorilla’s position A=8-E (22)

vector in the next iteration. X(t) is the current gorilla’s posi-
tion vector, rq, 2, r3, and rand are uniform random values
between 0 and 1, and p is a hyper-parameter that determines
the probability of selecting random migration. U B and U L
are the upper and lower bounds of our solution variables. X,
is a randomly selected gorilla from the entire population. C,
L and H are calculated using the following equations

t
C=(os2-r3)+1)- (1 — Maxlt) (15)
L=C-I (16)
H=Z X (17)

where Maxlt is the total value of iterations to perform the
optimization, 1 is a random value in the range of -1 and 1,
r4 is a uniform random value between 0 and 1 while Z is a
uniform random value in the range of [-C, C].

Exploitation phase
The exploitation phase in GTO implies two strategies: fol-
lowing the silver-back and competing for adult females. The

silver-back is considered the troop leader who takes deci-
sions. The W parameter should be specified before starting

@ Springer

A is a coefficient vector to determine the degree of violence
in conflicts and is calculated using §, a parameter to be given
value before the optimization operation while rs is a uniform
random value between O and 1.

Our proposed DGTO

The original version of GTO is performed as well on a contin-
uous space. So, many issues need to be resolved regarding its
implementation to our discrete problem. At the time of writ-
ing this article, there is no published discrete version of this
algorithm. Because of its superior results in benchmarks, it
was more relevant to keep the original model of GTO and use
the discrete mapping function ® expressed in Equation (23).

st, 0<x; <r
2, I =Xxi<n
(23)

Smy, tn—1 <X <1

We also present the discrete distance between the search
agents (gorillas), calculated using Equation (24)

Journal of Intelligent Manufacturing

-ix@ -4uQ
ws4 4 | wss [ws2 4 | ws
= a e e a o]
o] (G0 (5] =]
Storage Storage Storage Storage
8 -4 4 4 Pool
oP4 oP3 oP2 oP1 Stock
[ara
[- S| a—
na or Line stations
Storage| WS5 ‘l wWs6 Storage Storage| Ws7 ‘l wss Storage
- - | wso | [ws10] [ws11]

Fig.3 Our use case’s U-shape assembly line layout

< AY Aq>=zn:d- 4. = 1 Llapj —aq; 1#0 p£q
DREEX) .] %y Ov|a[?j_aqj|=0’
j=1

(24)

where A” and A? are respectively the p-th and g-th search
agents, ap; refers to the j-th element of the p-th search agent.

Based on that, the discrete exploration phase is mathemat-
ically modeled by Equations (25) and (26)

®O[(UB — LB) -r| + LB], rand < p
A+ 1) = Ol(rn-C)-X,t)+L-H], rand > 0.5
OIX(1) — L - (L < Ay(t), AL(t) >
+r3- < Ag(1), AL(t) >)], rand < 0.5
(25)
where
X(1) = 07 (A, (1)) (26)

As (1) and X () are respectively the gorilla assignment vec-
tor and its continuous position vector at the iteration t, while
A’ (¢) and X, (¢) are respectively a random gorilla vector and
its corresponding position vector. C, L and H are calculated
using Equations (15), (16), and (17).

For the discrete exploitation phase of our DGTO, the com-
petition for gorilla females is done using Equation (27)

As(t + 1) = O(Xitver-back— < ASYr®k A1) > .0 A)
27)

On the other hand, following the silver-back strategy by
Equation (28)

At +1) = O(L - M- < ASMrPk A (1) > +X (1)) (28)

where

X(t) =07 (A1)

. (29)
X silver-back =— ® - (Aillver_baCk)

The pseudo-code of DGTO is presented below (Algorithm 2)

Algorithm 2 DGTO

Input: p, 8, W, N,, Maxlter
QOutput: Best Solution
procedure DGTO
Generate random population of N, gorilla
while i < MaxIter do
for each gorilla A; in population do
Update each gorilla position by exploring (Eq.25)
Calculate the objective function of the gorilla
end for
A* is the so far best solution (silver-back)
for each gorilla A; in population do
Update C, L and H using Egs. (15), (16), (17).
if C > W then
Update gorillas by conflicting for females (Eq. 25)
else
Update gorillas by following silver-back (Eq. 28)
end if
Calculate the objective function of the new gorilla
end for
A* is the so far best solution (silver-back)
end while
return A* Best Solution
end procedure

Experimental results
Use case

Our approach s tested on a use case involving a hybrid assem-
bly line comprising four welding machines (V-cells), each
equipped with a welding robot and has two identical work-
stations, and four manual workers. Followed by 3 end-of-line
stations (Fig. 3).

The exhaust system, which is the product being manufac-
tured, is comprised of 24 components that require 35 welds
to be assembled as shown in Fig. 4.

@ Springer

Journal of Intelligent Manufacturing

Table 2 Parameters of the

methods (Population Size, Optimizer Pop. Size Init. Parameters Iterations

Hyper—pgrameters and number SA 1 To=1,a=1-it/itya 1000

of iterations)
GA 25 Pmut = 0.2, peros =0.8 200
PSO 100 Ci=C,=C3=05 1000
ASrm 100 PE =0.01 1000
ACSrm 100 PE =0.01 1000
DGWO 25 None 100
VNS-DWOA 25 None 100
DGTO 25 p=003,=3,W=038 200

O Part or component

—> Single Assembly task

===> Double Assembly task

Fig.4 Task Sequence of the use case’s product: 24 parts assembled by
35 welding task

We note that the best assembly scenario proposed by the
process expert (PE) has a cycle time of 118 s and an average
balancing error between resources of 6.

Experiments

To evaluate the effectiveness of the proposed algorithms, the
following methods are being considered for comparison:

Fig.5 Box-and-whiskers plot 190
comparing the performance of 1
the algorithms for the Assembly 180 7 [Best Performer
Cycle Time Minimization over 170 4
40 runs —
&L
o 1601
£
= 150 *
o
2140
O]
g130q *
m] {
120 preey B b
1mo{ - 7 .
100 T T

Simulated Annealing (SA): the search space is explored
by randomly generating new candidate solutions and per-
forming small changes over the so-far best solution. A
better solution is always accepted, while a worse solu-
tion might be accepted with a certain probability that

decreases over time and is controlled by a temperature
parameter (Vincent et al., 2022).

Genetic Algorithm (GA): the placement and allocation
decisions for all tasks in this method are determined by
the GA operators (mutation, crossover, and selection).
Particle Swarm Optimizer (PSO): the solution generation
is based on the movement of particles through the search
space and the update of their position in the direction of
the best solution found so far by the swarm (Singh &
Singh, 2023).

Ant System with Random Search (ASrm): The solu-
tion space is inhabited by a group of ants that modify
the overall level of pheromone during each iteration. An
improved solution is selected by the quantity of accumu-
lated pheromones (Zhou et al., 2022). We use a random
search for local search.

Ant Colony System with Random Search (ACSrm): A
variant of ASrm is employed to reach the optimal solu-
tion by updating the pheromone level both locally and
globally. Local pheromone updates are permitted for all
ants, whereas only the so-far best solution can perform
global updates (Chen et al., 2022).

Proposal of Process Expert .

@ Springer

Journal of Intelligent Manufacturing

e Discrete Grey Wolf Optimizer (DGWO): the solution
space consists of a population of grey wolves, where each
wolf represents a possible solution. Then, the population
is iteratively updated, using a transfer function, by fol-
lowing the guidance of the three fittest solutions, referred
to as alpha, beta, and delta (Sharma et al., 2022).

e Random Guessing: the solution is constructed at random
without any specific strategy or guidance. This approach
involves randomly selecting a solution from a set of possi-
ble solutions and repeating the process until an acceptable
solution is found.

All experiments were conducted on a Windows computer
with Intel(R) Core(TM) CPU i9 3.50GHz and 128 GB RAM.
All methods were launched for the same execution time of
1'h for 40 runs. For each of the 40 optimization trials, an
independent initial population is randomly generated. The
table 2 restates the parameters of the implemented methods.

Ty and « are respectively the initial temperature and the
cooling factor of the simulated annealing (SA). py,; and
Pcros are respectively the probability of mutation and the
crossover of the genetic algorithm (GA). C; is the inertia
weight and C;, C3 are the acceleration coefficients of PSO.
PE is the pheromone evaporation (known also as the learning
rate) of both ASrm and ACSrm. p, 8 and w are the parameters
of DGTO presented in section 7.

Results & analysis

We showcase the outcomes of 40 optimization runs con-
ducted to compare the performance of the different algo-
rithms that were evaluated. The aim is to identify the most
promising algorithms based on their performance.

As shown in Table 3, the optimization method VNS-
DWOA exhibits superior performance compared to the other
methods in terms of average cycle time, and best and worst
solutions, with only a slightly higher deviation rate than
DGTO. Additionally, VNS-DWOA was able to generate
assembly scenarios with lower cycle times than those pro-
posed by the process expert (PE) in the use case. Notably,
all of the optimization methods tested outperform random
guessing, indicating that even the simplest of methods can
provide significant improvements over purely random selec-
tion.

These findings are further reinforced by the box-and-
whisker plot presented in Fig.5, which provides clear evi-
dence that throughout all 40 experiments, VNS-DWOA
consistently generates an assembly scenario with a cycle time
comparable to, if not better than, the one proposed by the pro-
cess expert within an hour of computation time.

When conducting experiments that involve multiple opti-
mization algorithms, it is necessary to compare their per-
formances accurately and reliably. Statistical tests provide a

Table 3 The best, worst, mean, and standard deviation (SD) values of
assembly cycle time produced by all optimizers in seconds

Optimizer Best Worst Mean Median SD
SA 110.64 137.33 120.10 118.05 6.37
GA 107.91 150.96 121.44 121.41 6.38
PSO 108.63 145.20 128.73 127.55 6.06
ASrm 111.10 135.17 123.94 123.14 5.34
ACSrm 111.26 136.07 122.60 123.14 6.11
DGWO 115.10 126.40 126.40 127.03 5.40
VNS-DWOA 104.45 11850 111.16 111.07 3.84
DGTO 113.00 124.32 119.80 120.00 2.90
Random 120.66 183.22 140.24 136.82 15.01

rigorous approach to evaluating the differences between the
performances of these algorithms. However, the normality
assumption that underlies many commonly used statistical
tests is often violated when analyzing such data. To over-
come this issue, a non-parametric statistical test analysis is
recommended.

One of the most commonly used non-parametric tests for
multiple comparisons is the Friedman test (Derrac et al.,
2011). This test is used to compare the mean ranks of three
or more groups and is robust to the presence of outliers or
skewed data. The null hypothesis Hy in the Friedman test
is that there is no significant difference in the performance
between all the optimizers.

If the Friedman test reveals a significant difference
between the algorithms, it is important to conduct further
analysis to determine which pairs of algorithms are differ-
ent. The Bonferroni-Dunn test (Kashiwado et al., 2023) is
a suitable posthoc test that allows for the comparison of all
algorithms to one another using adjusted significance levels
based on the number of pairwise comparisons being made.
The Wilcoxon rank-sum test (Garren & Davenport, 2022) is
another pairwise comparison test that compares the ranks of
two groups to determine if there is a significant difference
between them.

The results of the Friedman test, as reported in Table 5,
indicate a significant difference between the performances
of some of the algorithms being tested, as evidenced by a p-
value of significantly lower than 0.05. This means that we can
reject the null hypothesis Hy and conclude that at least some
of the algorithms have significantly different performances.

However, the Friedman test is unable to provide informa-
tion regarding which pairs of algorithms exhibit significant
differences. Therefore, we use the Bonferroni-Dunn test, a
posthoc test that was applied to every pair of algorithms,
resulting in 36 unique pairs. Table 4 summarizes the p-values
obtained from this test.

@ Springer

Journal of Intelligent Manufacturing

Table 4 P-values of Bonferroni-Dunn test: Italic refers to the significant difference, Bold reflects no significant difference (p < 0.05)

P-value SA GA PSO ASrm ACSrm DGWO VNS-DWOA DGTO Random
SA — 1.0 1E-4 0.08 1.0 SE-4 7E-04 1.0 9E-13
GA 1.0 - 0.01 1.0 1.0 0.04 3E-06 1.0 2E-09
PSO 1E-04 0.01 — 1.0 0.38 1.0 2E-17 SE-4 0.09
ASrm 0.08 1.0 1.0 - 1.0 1.0 9E-12 0.19 1E-04
ACSrm 1.0 1.0 0.38 1.0 — 0.80 9E-09 1.0 1E-06
DGWO SE-4 0.04 1.0 1.0 0.80 — 2E-16 1E-3 0.03
VNS-DWOA 7E-04 3E-06 2E-17 9E-12 9E-09 2E-16 — 2E-4 6E-31
DGTO 1.0 1.0 SE-4 0.19 1.0 1E-3 2E-4 - 7E-12
Random 9E-13 2E-09 0.09 1E-4 1E-06 0.03 6E-31 7E-12 —

Table 5 Friedman test for the comparison between the optimizers

Optimizer Avg. Ranking %2 statistic p-value
VNS-DWOA 1.33

SA 3.75

DGTO 3.98

GA 443

ACSrm 4.98 167.53 4.22E-32
ASrm 5.45

DGWO 6.25

PSO 6.55

Random 8.28

Based on the average ranking, the results of Bonferroni-
Dunn test (Table 4) indicate that only VNS-DWOA algorithm
is able to significantly perform differently than all the other
8 methods with a very low p-value. If we take the high-
est p-values calculated for VNS-DWOA, which is 2.1074,
this means that the probability of observing such a differ-
ence in performance by chance is less than 0.02%, which
is a strong indication of the superior performance of VNS-
DWOA. Moreover, DGTO, SA, and GA exhibit significantly
better performance than PSO, DGWO, and Random Guess-
ing. On the other hand, ASrm and ACSrm only present better
results than Random Guessing. PSO is the only algorithm
that does not demonstrate a significant difference when com-
pared to random guessing. However, this does not imply
that random guessing is superior, but rather that we lack
sufficient statistical evidence to reject the null hypothesis
for PSO/Random Guessing comparison. The Bonferroni-
Dunn test is known for being a conservative test, meaning
that it controls the family-wise error rate by adjusting the
significance level for multiple comparisons. Therefore, the
significant differences found between VNS-DWOA and the
other algorithms are reliable and robust.

In order to confirm the best performers, we conduct multi-
ple pair-wise comparisons using the Wilcoxon sum-rank test.

@ Springer

Since we want to know which method has the lowest sample
of cycle time, we use the alternative hypothesis "less" which
means that we are testing whether the first sample is sig-
nificantly less than the second sample. In this case, the null
hypothesis Hy would be that the median difference between
the two samples is not less than zero.

Wilcoxon sum-rank test results, recapitulated in Table 6,
confirm the superiority of VNS-DWOA over all other eight
methods with very low p-values. Additionally, the test results
reveal that SA and DGTO are both on the same level, and they
significantly outperform GA, ACSrm, ASrm, PSO, DGWO,
and Random Guessing, with p-values less than 0.05, in find-
ing minimized assembly cycle time.

To sum up, the statistical analysis performed on the exper-
imental data using the Freidman Test, Bonferroni-Dunn test,
and Wilcoxon sum-rank test indicate that the VNS-DWOA
method outperforms all other methods tested. Specifically,
the VNS-DWOA method consistently achieved higher qual-
ity solutions than the other methods, and its performance
remained stable and correct even as it converged to high-
quality solutions. These results suggest that the VNS-DWOA
method is a reliable and effective optimization technique for
the given problem domain. Therefore, it may be a promising
approach to consider for future studies or applications in this
field.

VNS-DWOA, as a hybrid optimization algorithm, com-
bines the strengths of both Variable Neighborhood Search
(VNS) and Whale Optimization Algorithm (WOA). VNS
is known for its ability to escape local optima and explore
different regions of the search space, while WOA’s discrete
encircling behavior can efficiently converge to high-quality
solutions by re-balancing iteratively the workload taking into
account its overall impact on all equipment. In contrast, the
statistical study revealed that certain techniques, such as Par-
ticle Swarm Optimization (PSO) and Grey Wolves Optimizer
(GWO), exhibited poor performance, possibly due to their
difficulty in handling discrete variables and executing dis-
crete search operations.

Journal of Intelligent Manufacturing

Table 6 The Wilcoxon sum-rank test results for the comparison of the algorithms (p < 0.05) -the row method better than the column method-

Better than VNS-DWOA SA DGTO GA ACSrm ASrm DGWO PSO Random
VNS-DWOA - 1E-10 2E-12 3E-08 3E-11 2E-11 9E-13 1E-11 9E-13
SA - 0.20 0.09 0.03 9E-04 1E-05 3E-06 6E-12
DGTO - 0.12 9E-03 1E-04 2E-07 1E-06 9E-13
GA - 0.12 0.01 2E-04 7E-05 6E-10
ACSrm - 0.18 3E-03 1E-03 1E-10
ASrm - 0.07 1E-03 8E-10
DGWO - 0.12 1E-07
PSO - 1E-04
Random -

Lastly, the dynamic simulation-based framework used
in the study may have also contributed to the superior
performance of VNS-DWOA. By incorporating realistic con-
straints and interactions between different components of the
hybrid assembly line, the framework has provided a more
realistic and accurate representation of the optimization prob-
lem, facilitating the search agents’ ability to navigate through
their exploration and exploitation processes with greater pre-
cision and accuracy.

Conclusion

In conclusion, we presented two recent swarm intelligence-
based methods, VNS-DWOA and DGTO, to solve a general
version of type-2 hybrid assembly line balancing problem.
We have used a discrete event simulator to accurately esti-
mate the cycle time of the assembly line based on a given
scenario. The optimization algorithms were tested on a real
industrial use case and compared with six other state-of-
the-art meta-heuristics as well as random guessing. The
performance of the methods was assessed using three dif-
ferent statistical tests on 40 independent runs: Friedman test,
Bonferroni-Dunn test and Wilcoxon sum-rank test.

The results obtained from our study clearly demonstrate
the superior performance of the VNS-DWOA method com-
pared to all other methods, including the state-of-the-art
approaches. In terms of average cycle time, best solutions,
and worst solutions, the VNS-DWOA consistently outper-
forms its counterparts without any exceptions. Remarkably,
within just approximately 1h of execution, the VNS-DWOA
method is capable of generating assembly scenarios that
exhibit a 7% lower cycle time compared to the scenarios pro-
posed by the process experts. This highlights the remarkable
efficiency and effectiveness of the VNS-DWOA method.

Furthermore, our study shows that the DGTO method
performs significantly better than several other methods,
namely GA, ACSrm, ASrm, PSO, DGWO, and Random

Guessing. With an average achieved cycle time of 119s,
the DGTO method outperforms these competitors. However,
it falls short of surpassing the performance of the process
experts and the VNS-DWOA method, as it has not consis-
tently achieved a lower cycle time on average. These findings
have been validated through rigorous statistical analysis, as
indicated by the low p-values obtained from the three statis-
tical tests.

The research can be further extended to include the
analysis of optimal parameters adjustment to enhance the per-
formance of the proposed algorithms. Furthermore, we plan
to incorporate a global cost function that takes into account
equipment costs and other relevant factors. Moreover, we
aim to develop a continuous learning block that can add the
concept of lessons learned to the assembly line design. This
will enable the correction of design mistakes made previ-
ously and allow for dynamic adjustment of constraints based
on the feedback dataset.

Overall, our research provides a valuable contribution to
the field of hybrid assembly line design and optimization.
Our swarm intelligence-based framework offers an effective
and efficient approach to solving assembly line design prob-
lems, which has significant implications for the automotive
industry and beyond. We believe that the proposed methods
can be adapted and extended to various manufacturing and
production settings, offering practical and actionable insights
for process improvement and optimization.

Author Contributions A. El Houd conceptualized and implemented
the proposed optimizers, conducted statistical tests, and authored the
main manuscript text and figures. B. Piranda provided supervision,
contributed to the development of the simulator, and assisted with
manuscript editing. R. De Matos provided supervision, reviewed and
edited the manuscript, validated the findings, and secured the testing
of the framework on a real industrial use case. J. Bourgeois provided
supervision, reviewed and edited the manuscript, validated the findings,
and acquired funding for the project.

Funding This work was done as a research collaboration between

FORVIA and FEMTO-ST Institute, funded by the Ministry of Higher
Education and Research of France and managed by the Association

@ Springer

Journal of Intelligent Manufacturing

Nationale de la Recherche et de la Technologie (ANRT) as a part of a
CIFRE (N 2021/1302).

Data Availability The data underlying this article, including the devel-
oped methods and test data, are available upon request. However, due
to confidentiality considerations, detailed information regarding the
assembly line and welding process, detailed process durations cannot
be publicly disclosed.

Declarations

Conflict of interest All authors declare that they have no conflicts of
interest to disclose.

References

Abdollahzadeh, B., Soleimanian Gharehchopogh, F., & Mirjalili, S.
(2021). Artificial gorilla troops optimizer: A new nature-inspired
metaheuristic algorithm for global optimization problems. Inter-
national Journal of Intelligent Systems, 36(10), 5887-5958.

Adnan, A. N., Arbaai, N. A., & Ismail, A. (2016). Improvement of
overall efficiency of production line by using line balancing. ARPN
Journal of Engineering and Applied Sciences, 11(2), 7752-7758.

Al-Betar, M. A., Awadallah, M. A., Doush, I. A., Alomari, O. A., Abasi,
A. K., Makhadmeh, S. N., and Alyasseri, Z. A. A. (2022). Boost-
ing the training of neural networks through hybrid metaheuristics.
Cluster Computing , 1-23.

Alorf, A. (2023). A survey of recently developed metaheuristics and
their comparative analysis. Engineering Applications of Artificial
Intelligence, 117, 105622.

Alwajih, R., Jadid, A., & Al Hussain, H. (2022). Hybrid binary whale
with harris hawks for feature selection. Neural Computing and
Applications, 07, 1-19.

Becerra-Rozas, M., Cisternas-Caneo, F., Crawford, B., Soto, R., Gar-
cia, J., Astorga, G., & Palma, W. (2022). Embedded learning
approaches in the whale optimizer to solve coverage combinatorial
problems. Mathematics, 10(23), 4529.

Bukchin, Y., & Raviv, T. (2018). Constraint programming for solving
various assembly line balancing problems. Omega, 78, 57-68.

Cerny, V. (1985). Thermodynamical approach to the traveling salesman
problem: An efficient simulation algorithm. Journal of Optimiza-
tion Theory and Applications, 45, 41-51.

Chen, J., Jia, X., & He, Q. (2023). A novel bi-level multi-objective
genetic algorithm for integrated assembly line balancing and part
feeding problem. International Journal of Production Research,
61(2), 580-603.

Chen, J.,Ling, F., Zhang, Y., You, T., Liu, Y., & Du, X. (2022). Coverage
path planning of heterogeneous unmanned aerial vehicles based
on ant colony system. Swarm and Evolutionary Computation, 69,
101005.

Dai, Y., Khandelwal, M., Qiu, Y., Zhou, J., Monjezi, M., and Yang, P.
(2022). A hybrid metaheuristic approach using random forest and
particle swarm optimization to study and evaluate backbreak in
open-pit blasting. Neural Computing and Applications, 1-16.

Derrac, J., Garcia, S., Molina, D., & Herrera F, F. (2011). A prac-
tical tutorial on the use of nonparametric statistical tests as a
methodology for comparing evolutionary and swarm intelligence
algorithms. Swarm and Evolutionary Computation, 1, 1, 3—18.

Dorigo, M., and Di Caro, G. (1999). Ant colony optimization: a new
meta-heuristic. In Proceedings of the 1999 congress on evolu-
tionary computation-CEC99 (Cat. No. 99TH8406), Vol. 2, IEEE,
pp. 1470-1477.

@ Springer

Garren, S. T., and Davenport, G. H. (2022). Using Kurtosis for Selecting
One-Sample T-Test or Wilcoxon Signed-Rank Test, vol. 41. pp. 46—
55.

Giordani da Silveira, W., Pinheiro de Lima, E., Gouvea da Costa, S.
E., & Deschamps, F. (2017). Guidelines for hoshin kanri imple-
mentation: Development and discussion. Production Planning &
Control, 28(10), 843-859.

Hansen, P., Mladenovi¢, N., Todosijevi¢, R., & Hanafi, S. (2017). Vari-
able neighborhood search: Basics and variants. EURO Journal on
Computational Optimization, 5(3), 423-454.

Hashim, F. A., Houssein, E. H., Hussain, K., Mabrouk, M. S., & Al-
Atabany, W. (2022). Honey badger algorithm: New metaheuristic
algorithm for solving optimization problems. Mathematics and
Computers in Simulation, 192, 84—110.

Hosseini, S., & Al Khaled, A. (2014). A survey on the imperialist com-
petitive algorithm metaheuristic: Implementation in engineering
domain and directions for future research. Applied Soft Comput-
ing, 24, 1078-1094.

Kashiwado, Y., Kimoto, Y., Sawabe, T., Irino, K., Nakano, S., Hiura,
J., Wang, Q., Kawano, S., Ayano, M., Mitoma, H., et al. (2023).
Antibody response to sars-cov-2 mrna vaccines in patients with
rheumatic diseases in japan: Interim analysis of a multicentre
cohort study. Modern Rheumatology, 33(2), 367-372.

Katoch, S., Chauhan, S. S., & Kumar, V. (2021). A review on genetic
algorithm: Past, present, and future. Multimedia Tools and Appli-
cations, 80, 8091-8126.

Kivi, M. E., & Majidnezhad, V. (2022). A novel swarm intelligence
algorithm inspired by the grazing of sheep. Journal of Ambient
Intelligence and Humanized Computing, 13(2), 1201-1213.

Kumar, N., & Mahto, D. (2013). Assembly line balancing: A review
of developments and trends in approach to industrial application.
Global Journal of Researches in Engineering Industrial Engineer-
ing, 13(2), 29-50.

Mehmet, H., et al. (2020). Constraint programming model for resource-
constrained assembly line balancing problem. Soft Computing,
24(7), 5367-5375.

Mirjalili, S. (2020). Special issue on*“‘real-world optimization problems
and meta-heuristics”. Neural Computing Applications, 32, 11965—
11966.

Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm.
Advances in Engineering Software, 95, 51-67.

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer.
Advances in Engineering Software, 69, 46-61.

Mladenovi¢, N., & Hansen, P. (1997). Variable neighborhood search.
Computers & Operations Research, 24(11), 1097-1100.

Mutingi, M., Mbohwa, C., & Mutingi, M. (2017). Mbohwa, C (pp.
183-197). Assembly Line Balancing: A Hybrid Grouping Genetic
Algorithm Approach. Springer.

Pan, J.-S., Zhang, L.-G., Wang, R.-B., Snésel, V., & Chu, S.-C. (2022).
Gannet optimization algorithm: A new metaheuristic algorithm
for solving engineering optimization problems. Mathematics and
Computers in Simulation, 202, 343-373.

Piranda, B., Gautam, I., Meyer, J., EIHoud, A., and Bourgeois, J. (2022).
Manufactsim: Manufacturing line simulation using heterogeneous
distributed robots. In International Conference on Advanced Infor-
mation Networking and Applications, Springer, pp. 130-140.

Pornsing, C., Sangkhiew, N., Sakonwittayanon, P., Jomtong, P., and
Ohmori, S. (2022). A new discretization technique for enhanc-
ing discrete particle swarm optimization’s performance. Science
& Technology Asia, pp. 204-215.

Prashar, A. (2023). Production planning and control in industry 4.0
environment: A morphological analysis of literature and research
agenda. Journal of Intelligent Manufacturing, 34(6), 2513-2528.

Rajpurohit, J., and Sharma, T. K. (2022). A hybrid metaheuristic for
transmission tower design optimization. In Soft Computing: Theo-

Journal of Intelligent Manufacturing

ries and Applications: Proceedings of SoCTA 2021 (pp. 857-868).
Springer.

Rodriguez, N., Gupta, A., Zabala, P. L., & Cabrera-Guerrero, G. (2018).
Optimization algorithms combining (meta) heuristics and mathe-
matical programming and its application in engineering.

Salhi, S., and Thompson, J. (2022). An overview of heuristics and
metaheuristics. The Palgrave Handbook of Operations Research
(pp. 353-403).

Sharma, I., Kumar, V., and Sharma, S. (2022). A comprehensive survey
on grey wolf optimization. Recent Advances in Computer Science
and Communications (Formerly: Recent Patents on Computer Sci-
ence), 15(3), 323-333.

Singh, G., & Singh, A. (2023). Extension of particle swarm optimization
algorithm for solving two-level time minimization transportation
problem. Mathematics and Computers in Simulation, 204, 727—
742.

Stan, L., Nicolescu, A. F., Pupéza, C., & Jiga, G. (2023). Digital twin and
web services for robotic deburring in intelligent manufacturing.
Journal of Intelligent Manufacturing, 34(6), 2765-2781.

Suwannarongsri, S., and Puangdownreong, D. (2009). Metaheuristic
approach to assembly line balancing. WSEAS Transactions on Sys-
tems, Vol 8.

Tang, Q., Meng, K., Cheng, L., & Zhang, Z. (2022). An improved multi-
objective multifactorial evolutionary algorithm for assembly line
balancing problem considering regular production and preventive
maintenance scenarios. Swarm and Evolutionary Computation, 68,
101021.

Tliba, K., Diallo, T. M., Penas, O., Ben Khalifa, R., Ben Yahia, N., &
Choley, J.-Y. (2022). Digital twin-driven dynamic scheduling of
a hybrid flow shop. Journal of Intelligent Manufacturing, 34(5),
1-26.

Vincent, F. Y., Susanto, H., Jodiawan, P., Ho, T.-W., Lin, S.-W., &
Huang, Y.-T. (2022). A simulated annealing algorithm for the
vehicle routing problem with parcel lockers. IEEE Access, 10,
20764-20782.

Walter, R., Schulze, P, et al. (2021). Salsa: Combining branch-and-
bound with dynamic programming to smoothen workloads in
simple assembly line balancing. European Journal of Operational
Research, 295(3), 857-873.

Wang, W., Wang, Q., Zhong, R., Chen, L., & Shi, X. (2023). Stacking
sequence optimization of arbitrary quadrilateral laminated plates
for maximum fundamental frequency by hybrid whale optimiza-
tion algorithm. Composite Structures, 310, 116764.

Wolpert, D., & Macready, W. (1997). No free lunch theorems for opti-
mization. IEEE Transactions on Evolutionary Computation, 1(1),
67-82.

Xie, L., Han, T., Zhou, H., Zhang, Z.-R., Han, B., & Tang, A. (2021).
Tuna swarm optimization: A novel swarm-based metaheuristic
algorithm for global optimization. Computational intelligence and
Neuroscience, 2021, 1-22.

Yadav, A., & Agrawal, S. (2022). Mathematical model for robotic two-
sided assembly line balancing problem with zoning constraints.
International Journal of System Assurance Engineering and Man-
agement, 13(1), 395-408.

Yao, P., & Gupta, S. M. Cat swarm optimization algorithm for solving
multi-objective sequence-dependent u-shaped disassembly line
balancing problem.

Yu, D., Zhang, X., Tian, G., Jiang, Z., Liu, Z., Qiang, T., & Zhan, C.
(2022). Disassembly sequence planning for green remanufactur-
ing using an improved whale optimisation algorithm. Processes,
10(10), 1998.

Zhou, Y., Liu, X., Hu, S., Wang, Y., & Yin, M. (2022). Combining max-
min ant system with effective local search for solving the maximum
set k-covering problem. Knowledge-Based Systems, 239, 108000.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

@ Springer

	Swarm intelligence-based framework for accelerated and optimized assembly line design in the automotive industry
	Abstract
	Introduction
	Background
	Related works
	Mathematical model formulation
	End-to-end framework
	VNS-discrete whale optimizer
	Original WOA
	Encircling prey
	Spiral update behavior
	Searching for prey

	Our proposed VNS-DWOA
	Discrete prey encirclement
	Discrete spiral update
	Seaching for the prey with VNS

	Discrete Gorilla troops optimizer (DGTO)
	Original GTO
	Exploration phase
	Exploitation phase

	Our proposed DGTO

	Experimental results
	Use case
	Experiments
	Results & analysis

	Conclusion
	References

