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Abstract—Welding seams’ visual inspection is manually op-
erated by humans in different fields, which makes the result of
inspection subjective and expensive. At present, the integration of
deep learning methods for welds classification is a research focus
in engineering applications. This work intends to apprehend and
emphasize the contribution of deep learning model explainability
and the improvement of welding seams classification accuracy:
two of the main metrics affecting production lines and cost in
the automotive industry.
This paper introduces a novel hybrid method that relies on
combining the model prediction scores and visual explanation
heatmap. The results reaches higher accuracy than a traditional
deep learning model, by at least 18,2%. New perspectives in
explaining and interpreting deep learning models are presented
in this contribution.

Index Terms—Visual Inspection, Industry 4.0, Deep Learning,
Model Explainability Heatmap, Hybrid Classification

I. INTRODUCTION

Welding is a manufacturing process consisting in joining
two or more elements in a permanent way while ensuring
continuity between these elements [1]. The assembly is done
either by heating, by pressure, or by the two combined.
Welding defects affect manufacturing plants, in which Faurecia
is a major actor on a global scale. Currently, there is a lot of
research work being done on the automation of quality control
[2], [3] and visual inspection of welding seams [4]. Automatic
systems has been developed based on artificial intelligence
(AI) to check the quality of welding seams in plants. These
systems are evaluated solely by their accuracy, the percentage
of true positive images and true negative images. However,
they have some shortcomings and errors in the classification
of welding seam quality even when their accuracy is high [4].
Model interpretation is becoming a primary evaluation metric
as well as its performance [5]. A compromise between explain-
ability and accuracy is more and more necessary in industrial
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applications.
The proposed approach in this study consists of:

1) Displaying heatmap of a deep learning model trained
with tensorflow.

2) Correlating heatmap results and traditional deep learning
classes’ scores.

3) Proposing a hybrid approach: integrating machine learn-
ing classifiers in order to improve overall accuracy.

This paper is organized as follows: Section II introduces the
problem statement and motivation to set up this study. Section
III presents an overview of the existing work done in the area
of welding seam inspection and model explainability. Section
IV displays the novel hybrid approach. In Section V, the
implementation details are mentioned. Section VI examines
the experimental results. The last section gives the concluding
remarks.

II. PROBLEM STATEMENT

A. Deep learning accuracy calculation

Since weld defects are not always present in production,
images from both OK and Not OK (NOK) classes will not
have the same occurrence, so this is an unbalanced dataset
problem [6].
Welding seam’s classification was initially solved by applying
data augmentation techniques [7]: a deep learning model based
on MobileNet architecture has been trained on a set of images
corresponding to four welding seams. Figure 1 shows how
each welding seam’s dataset is classified.

Fig. 1. Decision-making approach for MobileNet architecture



The proposed solution has reached the client’s requirements:
97% of NOK predicted as NOK on weld1 and weld4. The
challenge remains present on weld2 and weld3 with an av-
erage of 57,5% and 80,5% of accuracy reached respectively.
Hence the need to look for other methods to overcome this
problem. Table I displays the best accuracy results, obtained
when applying data augmentation techniques on MobileNet
architecture.

TABLE I
BEST RESULTS REACHED WITH DATA AUGMENTATION TECHNIQUES ON

WELD1, WELD2, WELD3 AND WELD4

Weld Number Data augmentation filter Accuracy
Weld1 Box blur 98,5%
Weld2 Flip 57,5%
Weld3 Rotation 80,5%
Weld4 No data augmentation 96,5%

B. Model Reliability

Model reliability is considered as an important criterion
when choosing the best model [8]–[10]: even if the accuracy
target is achieved, the model might use a biased part of the
image to classify it which causes a drop of accuracy when
faced with new data.
Heatmap visualization is a graphical representation of nu-
merical data. It uses matrices where each cell represents
the intensity of the studied event. In deep learning, heatmap
is used to represent the weights distribution relative to the
model’s decision-making [11]. Warm colors represent high
weights in the deep learning model while cool colors represent
low-value weights.

Fig. 2. Heatmap visualization of weld2 (OK and NOK images)

Figure 2 shows an example of OK/NOK images and their
relative heatmap visualization. The red square in ’OK image’
is the zone of interest on which the model should be based
on when classifying an OK image. The ’OK heatmap’ shows
the section on which the model relied on for classification
(warm colors sections). ’NOK image’ shows that there are two
defects in the NOK image (inside the red squares). While the
’NOK heatmap’ shows that the warm colors are not correctly
distributed: the warm colors are not super-imposed with the
zone of interest displayed in ’NOK image’. This means that
the model used a biased zone of interest in its decision-making.

Thus, this NOK image has been a misclassified weld by the
model.
Although the model has good overall accuracy on the dataset,
it is necessary to study the reliability of the model: in addition
to its accuracy, a possible correlation between the activation
heatmap results and the model classes’ scores can be identi-
fied.

III. RELATED WORKS

A. Visual Explanation Heatmap

The explainability of the AI model reinforces the credibility
of the obtained results and allows to evaluate the reliability of
the model and its behavior if a partial change occurred in data
[12]–[14]:
Selvaraju et al. [15] have first proposed the Grad-CAM
method, a visualization technique able to tell which parts of
a given image led the trained convolutional neural network
(CNN) to its final classification decision. This method makes
it easy to debug the decision process of a CNN, especially in
the case of misclassification. The result of this method is an
activation heatmap indicating the parts of the image that have
contributed the most to the final decision of the network.
In the same context, Zhang et al. [12] have applied model
explainability to interpret the deep learning models trained to
classify multiple sclerosis types in the brain using the Grad-
CAM method. The experimental results showed that Grad-
CAM gives the best heatmap localizing ability, and CNNs
with a global average pooling layer and pre-trained weights
had the best classification performance.
The Grad-Cam method has proven its ability in explaining
depp learning model’s decision-making. This method will
be added to MobileNet architecture for accuracy’s further
improvement.

B. Hybrid Methods

Ahlawat et al. [16] have implemented a hybrid method
using CNN and Support-vector machine (SVM) classifier for
handwritten digit recognition: CNN works as an automatic
feature extractor and SVM works as a binary classifier. Their
results showed that the hybrid approach achieved an accuracy
of 99.28% on the MNIST dataset.
Soumaya et al. [17] have tested a hybrid classification model
using a genetic algorithm and SVM to detect Parkinson’s
disease. Their method attempts to give an accuracy of 80%
and 72.50% using two kernels of SVM. The hybrid method
seems to ensure the optimization of the classification system
by minimizing the dimension of the features vector and
maximizing the accuracy.
In the same context, Ahammad et al. [18] have suggested
a new CNN-deep segmentation-based boosting classifier for
spinal cord injury prediction. This method gives 10% improve-
ment on the classification rate.
Another hybrid method is developed by Liu et al. [19] for CO2

welding defects detection by using CNN for primary features
extraction and long short-term memory (LSTM) for feature
fusion. The algorithm reaches 94% of prediction accuracy.



Hybrid methods can reach higher accuracy when the right
parameters are correlated together. In this contribution, tra-
ditional classes’ scores will be combined with the red color
ratio displayed in heatmaps.

IV. METHODS

A. Model Explainability

The main approach of this work is based on the Grad-
CAM method, introduced by Selvaraju et al. [15]. This method
assigns importance to each position in the last convolutional
layer by producing a coarse localization map of important
regions in the image. It computes the linear combination of
activations, weighted by the corresponding output weights of
the predicted class. The resulting class activation mapping
is then resampled to the size of the input image. Grad-cam
allows to validate that the deep learning model is looking at
the correct patterns.

B. Heatmap Analysis

The calculation of the Red Color Ratio (RCR) is done
using K-nearest neighbor (KNN). This algorithm identifies the
pixels’ closest color in the heatmap with K = 3 representing
the RGB color system. The Red Color Ratio is calculated as
follows:

RCR =
Number of Red Cluster pixels

Total number of pixels
× 100

Figure 3 shows the distribution of classes’ scores related to
weld3 images. Each blue dot is a defective weld (NOK image),
and the orange triangle is a non-defective weld in reality (OK
image). Defining a threshold in order to separate both clusters
is not possible with classes’ scores.

Fig. 3. Distribution of weld3 images per classes’ scores

A better visualization of both clusters is represented in
Figure 4: correlating the Red Color Ratio (RCR) parameter
with classes’ scores. This correlation offers better visibility
on the cluster’s distribution, compared to Figure 3.

Fig. 4. Correlating classes’ scores with Red Color Ratio for weld3 images

This correlation will be used for the rest of this study.
Having numerical input data, a machine learning classifier
should be used to assign a class label to these data inputs.

C. Machine Learning Classifiers

Machine learning classifiers have been tested for the im-
provement of the decision-making:

1) XGboost Classifier: a gradient boosting algorithm that
offers a panel of hyperparameters. It is possible to
have total control over the implementation of Gradient
Boosting [20]. The chosen booster is ”gbtree” which
uses a tree-based boosting. The step size shrinkage is
set to 0,5 and the used sampling method is the uniform
selection.

2) The decision tree uses the Gini function to measure the
quality of the split. Gini index measures the probability
of an observation [21]. Used to identify the degree of
a particular variable being wrongly classified when it
is randomly chosen. The max depth is set to the default
value so that the tree nodes are expanded until all leaves
are pure or contain less than 2 elements.

3) SVM classifiers: machine learning algorithms that solve
classification and regression problems; known for their
strong theoretical guarantees and their great flexibility.
SVM projects data into a higher-dimensional space and
makes them separable. It becomes a universal approxi-
mator [22]: with enough data, the algorithm can always
find the best possible boundary to separate two classes.
In this study, two SVM kernels are used:

• Linear Kernel: This is the case of a linear classifier,
without space change. The data are assumed to be
linearly separable.

• 5-Polynomial Kernel: This is the case where a
polynomial transformation is applied in order to



change the space. In this study, polynomial degree
is equal to five.

Adding a machine learning classifier changed the way each
welding seam has been classified (previously presented in
Figure 1). This paper’s proposed classification is presented
in Figure 5.

Fig. 5. Proposed decision-making approach: adding Grad-Cam heatmap and
Red Color Ratio

V. IMPLEMENTATION DETAILS

A. Data Collection

The dataset used in the paper [4] has been collected in
order to improve the accuracy of detecting defective parts. The
client’s requirements is 97% of weld defects detection. Weld2
and weld3 haven’t reached the target. Many data augmentation
filters have been applied on these two welds. One dataset has
been chosen for each of these welds, based on the potential
improvement of their accuracy, as below:

1) Flip filter has been selected for weld2: previously
reached 15% on OK images and 100% on NOK images
(an average of 57,5%).

2) Rotation filter has been selected for weld3: previously
reached 93% on OK images and 68% on NOK images
(an average of 80,5%).

B. Experimental Environement

The experimental environment is powered by Intel i5 CPU,
2.30 GHz with 64-bit, Windows 10 system and 8 GB memory.
The software programming environment is Python. It uses both
Keras and Tensorflow as backend. Rmsprop is selected as the
optimizer of the MobileNet model. The chosen learning rate
decay type is exponential starting with a value of 0.01 and
ending with a value equal to 0.0001. The model has been
trained with 9000 epochs.

VI. EXPERIMENTAL RESULTS

As in Table II, four of the machine learning classifiers have
been applied following the proposed approach.
Weld2 reaches an overall accuracy of:

1) 99,3% with XGBoost
2) 98,1% with Decision Tree
3) 98,8% with SVM linear and SVM Poly5

Compared to the traditional approach, weld2’s accuracy is
improved by +41,8%.
Weld3 reaches an overall accuracy of:

1) 98,7% with XGBoost and SVM Poly5
2) 97,2% with Decision Tree
3) 98,1% with SVM linear

Compared to the traditional approach, weld3’s accuracy is
improved by +18,2%.

TABLE II
PROPOSED DECISION MAKING RESULTS WHEN APPLIED ON WELD2 AND

WELD3

Welding Accuracy per Classifier
Seams XGboost Decision Tree SVM Linear SVM Poly5
Weld 2 99,3% 98,1% 98,8% 98,8%
Weld 3 98,7% 97,2% 98,1% 98,7%

These results prove that adding a statistical machine learn-
ing classifier after the feature extractor and class activation
heatmap does increase the overall accuracy of the model
for both welds. The target accuracy is reached, with a tiny
advantage to XGboost classifier.

VII. CONCLUSION & FUTURE DIRECTIONS

In this paper, a hybrid approach of CNN-Machine Learning
Classifier is proposed for welds defects classification. This
approach adds a new reliability score calculated using the
Grad-CAM heatmap.
The hybrid approach proposed in this paper reaches high
accuracy on weld defects classification. The highest accuracy
improvement was by +41,8% for weld2 using MobileNet-
XGboost classifier and by +18,2% for the weld 3 using
MobileNet-SVM Poly5 Kernel or MobileNet-XGboost clas-
sifier.
This work presents new model-driven optimization methods to
improve the accuracy of vision systems. In future work, this
approach can be applied on other deep learning architectures
to validate its efficiency.
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